Patients with Tremor Benefit from NINDS-funded “Smart Spoon” 5

The mission of NINDS is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease. Mostly when we think of that last part, about reducing burden, we think about translating basic neuroscience research into pharmaceuticals, implantable devices, and other treatments such as gene therapy or stem cell therapy. However, reducing burden is not always accomplished through clinical intervention. Sometimes it simply means restoring happiness, comfort, or dignity to suffering patients.

Recently, a new product funded in part by NINDS Small Business Innovation Research (SBIR) grants has hit the market with the potential to reduce the burden of nearly 11 million individuals worldwide with essential tremor (ET), Parkinson’s disease, and related disorders. Individuals with these disorders experience persistent tremors—or rhythmic shaking—throughout their body, though sufferers of ET shake mostly in their hands. The new product, called the Liftware Stabilizer, is a spoon that counteracts tremors that occur in patients’ hands and helps minimize spills that can make eating in social situations an anxiety-inducing affair.

The way the spoon works is that sensors embedded in the handle detect tremors, which are then compensated for by tiny motors. For example, as the shaking hand dips unexpectedly downward, the motors push the bowl of the spoon upwards relative to the handle just enough to offset the movement. A sharp movement to the right causes the motors to push the bowl back to the left. The net result is that the spoon stays steady and level, even during severe tremors. Attachments can be swapped out to convert the spoon into a fork and a deeper spoon for soup.

Diagram of the the NINDS-funded Smart Spoon highligting the following components: battery (ultra-thin rechargeable battery will last for several days on a charge); stabilizing technology (cutting-edge electronics will work to actively detect and stabilize your tremor; multiple attachments (fork, soup spoon, keyholder, and more are coming soon).

The Liftware Stabilizer is made by Lift Labs, a San Francisco-based company that was recently acquired by Google’s Life Sciences division as part of the tech company’s recent flurry of biotechnology firm acquisitions. In addition, the company has raised enough money through foundations and charitable contributions to donate a few hundred spoons to folks who could not otherwise afford one. More…

NINDS: A look back at 2014 2

Over the past year, we at NINDS have celebrated many great successes in neuroscience. We awarded the first wave of grants for The BRAIN InitiativeSM to over 100 investigators, and new funding opportunities to fulfill the cross-disciplinary goals of BRAIN have been issued with more to come in 2015. The Nobel Assembly presented the Nobel Prize in Physiology or Medicine to neuroscientists for their discoveries of the neurons responsible for processing the brain’s positioning system. Perhaps most exciting of all, in 2014 NINDS-sponsored investigators published over 7,500 peer-reviewed scientific articles ranging from studies that push the boundaries of fundamental knowledge of the nervous system to translational studies that apply basic research concepts to studies that advance clinical diagnostics and treatments to reduce the burden of neurological disease.

Truly, 2014 yielded many exciting moments for neuroscience and we could never summarize them all in a single blog post. What follows are a handful of examples of the stellar research being conducted by NINDS-funded investigators working here on the NIH campus or in universities and research institutions across the country and world. We encourage you to learn more about the amazing discoveries uncovered by NINDS scientists in 2014 by visiting our news pages, reviewing messages and blog posts from the NINDS Director, and exploring the details of our myriad research programs.

Click an image below to access a slide show of NINDS-funded research discoveries in 2014.

Center Without Walls Established to Tackle Sudden Unexpected Death in Epilepsy 1

In September, NINDS issued awards for the creation of a new center to research sudden unexpected death in epilepsy (SUDEP), the sudden and premature death of a person with epilepsy without apparent or known cause of death. SUDEP is the most common cause of premature mortality in human epilepsy. Unlike many NIH center programs, the Center for SUDEP Research will not be confined to a single institution. This unique consortium is the second of NINDS’s Epilepsy “Centers without Walls” (CWOW), which is a program designed to bring together the best expertise from across U.S. and international institutions to address a challenging research problem for people with epilepsy. The Center for SUDEP Research includes dozens of scientists who are armed with the basic science, computational, genetic, and clinical tools necessary to better understand and develop interventions to prevent this devastating consequence of living with epilepsy.

Evidence suggests that SUDEP may be caused by seizures that induce structural defects and/or brain circuit malfunction in brain stem areas (highlighted in pink) that control cardiovascular and/or respiratory functions.

Evidence suggests that SUDEP may be caused by seizures that induce structural defects and/or brain circuit malfunction in brain stem areas (highlighted in pink) that control cardiovascular and/or respiratory functions. Credit: Patrick J. Lynch, variation by User: Hk kng [CC-BY_SA-3.0] , via Wikimedia Commons

While the causes of SUDEP are currently unclear, mounting evidence points to seizures that induce structural defects and/or brain circuit malfunction in areas that control cardiovascular and/or respiratory functions. Using a multidisciplinary approach, scientists and clinicians participating in the new center without walls hope to understand what causes SUDEP and how can it be prevented.

One team of researchers will identify genes, predisposition to neurochemical imbalances, and structural irregularities in the brain that may increase the risk of cardiac arrhythmias and respiratory disruptions in epilepsy. In parallel, another team will develop a sophisticated repository for storing and sharing genetic, tissue and clinical data samples collected from 400 study participants with epilepsy per year for three years at each of 10 clinical sites across the country. This team will also analyze the collected samples to identify risk factors for SUDEP. More…

Parkinson’s Disease Biomarkers Program Recruits 1,000th Subject Reply

Posted by Story Landis

PDBPbanner (2)

Last month the 1,000th subject was enrolled in the Parkinson’s Disease Biomarkers Program (PDBP), marking a major milestone in the efforts of NINDS to develop a method to predict the early onset—and track the progression—of this debilitating neurological disorder.

We have made considerable progress in developing treatments, but people with Parkinson’s still suffer. While current treatments are most effective at alleviating early symptoms of the disease, symptoms in later stages are less responsive, and no intervention has been found to slow disease progression or prevent it. Like many neurological diseases, the search for better Parkinson’s treatments has been hindered by the fact that symptoms—including uncontrollable shaking, rigidity, and impaired balance—only start appearing well after the disease has begun to cause significant changes in the brain. More…

Back to Basics: A call for fundamental neuroscience research 12

Posted by Story Landis

NINDS supports a broad range of research projects, from basic studies of the nervous system to large Phase III clinical trials. Several years ago, we embarked on an institute-wide planning process to analyze and optimize our investments in basic, translational, and clinical research. Triggered by the observation that between 2003 and 2008, NINDS funding for R01s decreased by 10%, we extended our analyses to determine how our extramural funds are distributed across the spectrum of basic and applied research, and whether that distribution has changed over time.

To perform the analysis, we developed simple definitions of basic and applied research (listed at the end of this post) that could be applied as unambiguously and reproducibly as possible. We also divided each of these broad categories into two subcategories—basic/basic, basic/disease-focused, applied/translational, and applied/clinical. Expert neuroscientists, including program directors, scientific review officers, and other members of our staff then assigned funded projects to these subcategories based on careful reading of abstracts, specific aims, and, when necessary, additional sections of the grant application. Because a single application often proposed research in more than one subcategory, we assigned percentages of a grant to each subcategory as appropriate; for example, a grant could be described as 75% basic/basic and 25% basic/disease-focused.

Our analysis covered the period between 1997 and 2012 to ensure that any trends we observed did not reflect a short-term response to a particularly good or bad funding year. This analysis included most of the new and competing continuation grants issued each year. The specific funding mechanisms that we included are described below. Since this was an extremely labor-intensive task (and our staff have day jobs!), we selected eight years within this period for review.

Our first finding was that between 1997 and 2012, NINDS expenditures on applied research as a fraction of total competing research budget increased from 13% to 29% while the proportion of basic research declined from 87% to 71% (Figure 1). Continue reading…